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Abstract

A general solution to the field equations of generalized thermodiffusion in an elastic solid has been obtained, in the transformed form, using the
Fourier transform. Assuming the disturbances to be harmonically time dependent, the transformed solution is obtained in the frequency domain.
As an application, concentrated and distributed sources have taken to illustrate the utility of the approach. The transformed solutions are inverted
numerically, using a numerical inversion technique to invert the Fourier transform. The variations of concentration distribution, chemical potential
distribution and effect of diffusion on the normal stress and temperature distribution have been depicted graphically for Lord and Shulman (L–S)
and coupled thermoelastic (C-T) theories of thermoelasticity.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Boit [1] formulated the theory of coupled thermoelasticity to
eliminate the paradox inherent in the classical uncoupled the-
ory that elastic changes have no effect on temperature. The heat
equations for both theories are diffusion type predicting infi-
nite speeds of propagation for heat waves contrary to physical
observations. Lord and Shulman [2] introduced the theory of
generalized thermoelasticity with one relaxation time by pos-
tulating a new law of heat conduction to replace the classical
Fourier’s law. This law contains the heat flux vector as well as
its time derivative. It contains also new constant that acts as re-
laxation time. The heat equation of this theory is of the wave
type, ensuring finite speeds of propagation for heat and elas-
tic waves. The remaining governing equations for this theory,
namely, the equations of motion and constitutive relations re-
main the same as those for the coupled and uncoupled theories.
The theory was extended by Dhaliwal and Sherief [3] to general
anisotropic media in the presence of heat sources.
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The study of diffusion phenomenon is of great deal of in-
terest due to its many applications in geophysics and industrial
applications. Diffusion can be defined as the random walk, of
an ensemble of particles, from regions of high concentration
to regions of lower concentration. In integrated circuit fabri-
cation, diffusion is used to introduce “dopants” in controlled
amounts into the semiconductor substrate. In particular, diffu-
sion is used to form the base and emitter in bipolar transistors,
form integrated resistors, form the source/drain regions in Metal
Oxide Semiconductor (MOS) transistors and dope poly-silicon
gates in MOS transistors. Study of the phenomenon of diffu-
sion is used to improve the conditions of oil extractions (seek-
ing ways of more efficiently recovering oil from oil deposits).
These days, oil companies are interested in the process of ther-
moelastic diffusion for more efficient extraction of oil from oil
deposits.

Nowacki [4–7] developed the theory of thermoelastic diffu-
sion. In this theory, the coupled thermoelastic model is used.
Genin and Xu [8] investigated a problem on thermoelastic plas-
tic metals with mass diffusion.

Sherief et al. [9] developed the generalized theory of ther-
moelastic diffusion with one relaxation time, which allows the
finite speeds of propagation of waves. Olesiak and Pyryev [10]
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Nomenclature

θ = T − T0, T —absolute temperature
P chemical potential per unit mass
β1 = (3λ + 2μ)αt , αt —coefficient of linear thermal expan-

sion
β2 = (3λ + 2μ)αc, αc—coefficient of linear diffusion expan-

sion
K coefficient of thermal conductivity
a coefficients describing the measure of thermoelastic

diffusion effects
b coefficients describing the measure of diffusive ef-

fects
σij components of stress tensor
eij components of strain tensor
C concentration distribution
e = ekk cubic dilatation
ρ density
τ diffusion relaxation time

ui displacement vector
δij Kronecker’s delta
λ,μ Lame’s constants
CE specific heat at constant strain
T0 temperature of the medium in its natural state as-

sumed to be such that |θ/T0| < 1
τ0 thermal relaxation time
D thermoelastic diffusion constant

and

eij = 1

2
(ui,j + uj,i); i, j = 1,2,3

∇ = î
∂

∂x
+ ĵ

∂

∂y
+ k̂

∂

∂z

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
discussed a coupled quasi-stationary problem of thermodiffu-
sion for an elastic cylinder. Sherief and Saleh [11] investi-
gated the problem of a thermoelastic half-space in the context
of the theory of generalized thermoelastic diffusion with one
relaxation time. Singh [12,13] discussed the reflection phe-
nomena of waves from free surface of an elastic solid with
generalized thermodiffusion. Recently, Aouadi [14] studied the
thermoelastic–diffusion interactions in an infinitely long solid
cylinder subjected to thermal shock on its surface with a per-
meating substance. Aouadi [15] investigated the problem of
thermoelastic half-space with a permeating substance in contact
with the bounding plane in context of the theory of generalized
thermoelastic diffusion with one relaxation time and with vari-
able electrical and thermal conductivity.

The formulation and solution of the problems in frequency
domain are simpler than in the time-domain. This is, off course,
due to the absence of the time variable in the frequency domain
formulation and hence, the transformation of the dynamic prob-
lem into the static like problem. Many researchers have dealt
with the dynamic problems in the frequency domain. Sharma
et al. [16] discussed time harmonic sources in a generalized
thermoelastic continuum. Kumar and Rani [17] investigated the
dynamic response of a homogeneous, isotropic thermoelastic
half-space with voids subjected to time harmonic mechanical
and thermal sources.

The present investigation is to determine the components of
displacement, stress, temperature distribution and chemical po-
tential distribution in an isotropic homogeneous elastic solid
with generalized thermoelastic diffusion subjected to concen-
trated and distributed loads.

2. Basic equations

Following, Sherief et al. [9], the governing equations for
an isotropic, homogeneous elastic solid with generalized ther-
moelastic diffusion with one relaxation time in the absence of
body forces and heat sources are:

The constitutive equations

σij = 2μeij + δij [λekk − β1θ − β2C] (1)

P = −β2ekk + bC − aθ (2)

The equation of motion

μui,jj + (λ + μ)uj,ij − β1θ,i − β2C,i = ρ
∂2ui

∂t2
(3)

The equation of heat conduction

ρCE

(
∂

∂t
+ τ0

∂2

∂t2

)
θ + β1T0

(
∂

∂t
+ τ0

∂2

∂t2

)
e

+aT0

(
∂

∂t
+ τ0

∂2

∂t2

)
C = Kθ,ii (4)

The equation of mass diffusion

Dβ2e,ii + Daθ,ii +
(

∂

∂t
+ τ

∂2

∂t2

)
C − DbC,ii = 0 (5)

where list of symbols are given in the nomenclature.

3. Formulation and solution of the problem

We consider an isotropic, homogeneous elastic solid with
generalized thermoelastic diffusion in the undeformed state at
temperature T0. We introduce the rectangular Cartesian coordi-
nate system (x, y, z) which has its origin on the surface z = 0
with the z-axis pointing normally into the medium.

For two-dimensional problem, we assume

�u = (u1,0, u3) (6)

The initial and regularity conditions are given by

u1(x, z,0) = 0 = ∂u1
∂t

(x, z,0)

u3(x, z,0) = 0 = ∂u3 (x, z,0)

}

∂t
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θ(x, z,0) = 0 = ∂θ
∂t

(x, z,0)

C(x, z,0) = 0 = ∂C
∂t

(x, z,0) for z � 0, −∞ < x < ∞

}
(7)

u1(x, z, t) = u3(x, z, t) = θ(x, z, t) = C(x, z, t) = 0

for t > 0 when z → ∞ (8)

Assuming time harmonic behavior as

(u1, u3, θ,C)(x, z, t) = (u1, u3, θ,C)(x, z)eiωt (9)

where ω is the angular frequency.
To facilitate the solution, the following dimensionless quan-

tities are introduced

x′ = ω∗
1

c1
x, z′ = ω∗

1

c1
z, t ′ = ω∗

1 t, u′
1 = ω∗

1

c1
u1

u′
3 = ω∗

1

c1
u3, t ′33 = t33

β1T0
, t ′31 = t31

β1T0
, ω′ = ω

ω∗
1

θ ′ = β1

ρc2
1

θ, C′ = β2

ρc2
1

C, a′ = ω∗
1

c1
a, τ ′ = ω∗

1τ

τ ′
0 = ω∗

1τ0, P ′ = P

β2
, P ′

1 = P1

β1T0
, P ′

2 = β1

ρc2
1

P2

P ′
3 = P3

β2
(10)

where

c2
1 = λ + 2μ

ρ
, ω∗

1 = ρCEc2
1

K

The displacement components u1(x, z, t) and u3(x, z, t) may
be written in terms of potential functions φ(x, z, t) and ψ(x, z, t)

as

u1 = ∂φ

∂x
− ∂ψ

∂z
, u3 = ∂φ

∂z
+ ∂ψ

∂x
(11)

Using Eqs. (6) and (9)–(11), Eqs. (3)–(5) recast into the follow-
ing form (after suppressing the primes)(

∇2 + ω2

δ

)
ψ = 0 (12)(∇2 + ω2)φ − θ − C = 0 (13)(∇2 − n1

)
θ = ε1n1

(∇2φ + a1C
)

(14)

∇4φ + a1∇2θ − ε2
(∇2 − a2n2

)
C = 0 (15)

where

δ = μ

λ + 2μ
, ε1 = β2

1T0

ρCE(λ + 2μ)
, a1 = a(λ + 2μ)

β1β2

ε2 = b(λ + 2μ)

β2
2

, a2 = 1

bDη
, η = ρCE

K

n1 = iω(1 + τ0iω), n2 = iω(1 + τ iω)

Applying Fourier transformation defined by

f̂ (ξ, z,ω) =
∞∫

f (x, z,ω)eiξx dx (16)
−∞
on Eqs. (12)–(15), then eliminating φ̂, θ̂ , Ĉ and ψ̂ from the
resulting expression we obtain(

d6

dz6
+ Q

d4

dz4
+ N

d2

dz2
+ I

)(
φ̂, θ̂ , Ĉ

) = 0 (17)(
d2

dz2
− λ2

4

)
ψ̂ = 0 (18)

where Q, N , I and λ4 are listed in Appendix A.
The roots of Eq. (17) are ±λl (l = 1,2,3) and the roots of

Eq. (18) are ±λ4. Making use of radiation condition φ̂, θ̂ , Ĉ

and ψ̂ → 0 as z → ∞, the solutions of Eqs. (17) and (18) may
be written as

φ̂ = A1e−λ1z + A2e−λ2z + A3e−λ3z (19)

θ̂ = d1A1e−λ1z + d2A2e−λ2z + d3A3e−λ3z (20)

Ĉ = e1A1e−λ1z + e2A2e−λ2z + e3A3e−λ3z (21)

ψ̂ = A4e−λ4z (22)

with Al (l = 1,2,3) being arbitrary constants and dl and el are
given in Appendix B.

4. Applications

On the half-space surface (z = 0) normal force, thermal
source and chemical potential source, which are assumed to be
time harmonic, are applied. We consider three types of bound-
ary conditions, as follows:

4.1. The normal force on the surface of half-space

The boundary conditions in this case are

(i) t33(x, z, t) = −P1ψ1(x)eiωt , (ii) t31(x, z, t) = 0

(iii) θ = 0, (iv) P = 0, at z = 0 (23)

where ψ1(x) specify source distribution function along x-axis
and P1 is the magnitude of force applied.

Making use of Eqs. (1), (2) and (9)–(11)in the boundary
conditions (23) and applying the Fourier transform defined by
Eq. (16) and substitute the values of φ̂, θ̂ , Ĉ, ψ̂ from Eqs. (19)–
(22) in the resulting equations, we obtain the expressions for
components of displacement, stress, temperature distribution
and chemical potential distribution which are given in Appen-
dix C.

4.2. The thermal source on the surface of half-space

When the plane boundary is stress free and subjected to ther-
mal source, the boundary conditions are

(i) t33(x, z, t) = 0, (ii) t31(x, z, t) = 0

(iii) θ = P2ψ1(x)eiωt , (iv) P = 0, at z = 0 (24)

where ψ1(x) is the source distribution function along x-axis
and P2 is the constant temperature applied on the boundary.

With the help of Eqs. (1), (2) and (9)–(11) and the boundary
conditions (24), the corresponding expressions for components
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of displacement, stress, temperature distribution and chemical
potential distribution are as given by Eqs. (C.1)–(C.6) (Appen-
dix C) with Δl replaced by Δ∗

l (l = 1,2,3,4) and P1 replaced
by P2, respectively, in Eq. (C.7), where

Δ∗
1 = m1(s2t3 − s3t2) + s4(λ2t3 − λ3t2)

Δ∗
2 = m1(s1t3 − s3t1) + s4(λ1t3 − λ3t1)

Δ∗
3 = m1(s1t2 − s2t1) + s4(λ1t2 − λ2t1)

Δ∗
4 = −[

s1(λ2t3 − λ3t2) − s2(λ1t3 − λ3t1) + s3(λ1t2 − λ2t1)
]

(25)

4.3. The chemical potential source on the surface of
half-space

Here the boundary is stress free and subjected to chemical
potential source, therefore the boundary conditions are

(i) t33(x, z, t) = 0, (ii) t31(x, z, t) = 0

(iii) θ = 0, (iv) P = P3ψ1(x)eiωt , at z = 0 (26)

where ψ1(x) is the source distribution function along x-axis
and P3 is the constant potential applied on the boundary.

Adopting the same procedure as in case of mechanical force
and thermal source and using the boundary condition (26) the
expressions for components of displacement, stress, temper-
ature distribution and chemical potential distribution are as
given by Eqs. (C.1)–(C.6) (Appendix C) by replacing Δl with
Δ∗∗

l (l = 1,2,3,4) and P1 with P3, respectively, in Eq. (C.7),
where

Δ∗∗
1 = −[

m1(s2d3 − s3d2) + s4(λ2d3 − λ3d2)
]

Δ∗∗
2 = −[

m1(s1d3 − s3d1) + s4(λ1d3 − λ3d1)
]

Δ∗∗
3 = −[

m1(s1d2 − s2d1) + s4(λ1d2 − λ2d1)
]

Δ∗∗
4 = s1(λ2d3 − λ3d2) − s2(λ1d3 − λ3d1)

+ s3(λ1d2 − λ2d1) (27)

4.3.1. Case I: Green’s functions
To synthesize the Green functions, i.e., the solutions due

to concentrated normal force/thermal source chemical potential
source on the half-space is obtained by setting

ψ1(x) = δ(x) (28)

in Eqs. (23), (24) and (26). Applying the Fourier transform de-
fined by (16) on Eq. (28) gives

ψ̂1(ξ) = 1 (29)

4.3.2. Case (II): Influence functions
The method to obtain the half-space influence function, i.e.,

the solutions due to distributed load applied on the half-space is
obtained by setting

ψ1(x) =
{

1 if |x| � a

0 if |x| > a
(30)

in Eqs. (23), (24) and (26). The Fourier transform with respect
to the pair (x, ξ) for the case of a uniform strip load of unit am-
plitude and width 2a applied at origin of the coordinate system
(x = z = 0) in dimensionless form after suppressing the primes
becomes

ψ̂1(ξ) =
[

2 sin

(
ξc1a

ω∗
1

)/
ξ

]
, ξ �= 0 (31)

The expressions for displacements, stresses, temperature
distribution and chemical potential distribution can be obtained
for concentrated normal force thermal source/chemical po-
tential source and uniformly distributed normal force/thermal
source/chemical potential source by replacing ψ̂1(ξ) from
Eqs. (29) and (31), respectively, in Eqs. (C.1)–(C.6) (Appen-
dix C) along with (25) and (27).

5. Particular cases

5.1. Neglecting the diffusion effects (i.e. β2 = b = a = 0),
we obtain the corresponding expressions due to normal force
for displacements, stresses, and temperature distribution in gen-
eralized thermoelastic half-space which are listed in Eqs. (D.1)–
(D.5) (Appendix D).

The above expressions yield the corresponding expressions
for concentrated and uniformly distributed normal force by re-
placing ψ̂1(ξ) from Eqs. (29) and (31) respectively in Eqs.
(D.1)–(D.5).

5.2. Making use the values of ψ̂1(ξ) from Eqs. (29)
and (31) in Eqs. (D.1)–(D.5) and by replacing Δ′

l with Δ′′
l

(l = 1,2,3) in Eq. (D.6) as given below, we obtain the expres-
sions for displacements, stresses and temperature distribution
in thermoelastic medium due to concentrated and uniformly
distributed thermal source, where

Δ′′
1 = m1s

∗
2 + s4λ2, Δ′′

2 = m1s
∗
1 + s4λ1

Δ′′
3 = s∗

2λ1 − s∗
1λ2 (32)

6. Special case

In case of coupled thermoelasticity, the relaxation times van-
ish i.e. τ0 = τ = 0 in equations given in Appendices A and B
and consequently, we obtain the corresponding expressions in
thermoelastic with diffusion and thermoelasticity, respectively,
and changed values are listed in Appendix E.

7. Inversion of the transforms

To obtain the solution of the problem in the physical domain,
we invert the transforms in Eqs. (C.1)–(C.6) and (D.1)–(D.5),
for the two theories, i.e. L–S and C-T theories of thermoelastic-
ity. These expressions are functions of z and the parameter of
Fourier transform ξ , and hence are of the form f̂ (ξ, z). To ob-
tain the function f (x, z) in the physical domain, we invert the
Fourier transform using,

f (x, z) = 1

2π

∞∫
−∞

e−iξx f̂ (ξ, z)dξ

= 1

π

∞∫ (
cos(ξx)fe − i sin(ξx)f0

)
dξ (33)
0
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where fe and f0 are, respectively, the even and odd parts of
the function f̂ (ξ, z). The method for evaluating this integral
is described by Press et al. [18], which involves the use of
Romberg’s integration with adaptive step size. This also uses
the results from successive refinements of the extended trape-
zoidal rule followed by extrapolation of the results to the limit
when the step size tends to zero.

8. Numerical results and discussion

Following Sherief and Saleh [11] copper material is chosen
for the purpose of numerical calculation.

T0 = 293 K, ρ = 8954 kg m−3, τ0 = 0.02 s, τ = 0.2 s

CE = 383.1 J kg−1K−1, αt = 1.78(10)−5 K−1

αc = 1.98(10)−4 m3 kg−1, K = 386 W m−1 K−1

λ = 7.76(10)10 kg m−1 s−2, μ = 3.86(10)10 kg m−1 s−2

D = 0.85(10)−8 kg s m−3, a = 1.2(10)4 m2 s−2 K−1

b = 0.9(10)6 m5 kg−1 s−2

The values of normal stress t33, temperature distribution θ ,
concentration distribution C and chemical potential distribution
P for thermoelastic diffusion (TED) and thermoelasticity (TE)
are studied for normal force/thermal source/chemical potential
source. The variations of the components with distance x are
shown (a) solid line for TED and solid line with center symbol
‘triangle’ for TE for L–S theory, (b) small dashed line for TED
and small dashed line with center symbol ‘Diamond’ for TE for
C-T theory. The variations are shown in Figs. 1–12. The compu-
tations are carried out for non-dimensional frequency ω = 1.5
and time t = 0.5 in the range 0 � x � 10.

Fig. 1. Variation of normal stress t33 with distance x (concentrated force).
Fig. 2. Variation of temperature distribution θ with distance x (concentrated
force).

Fig. 3. Variation of concentration distribution C with distance x (concentrated
force).

Fig. 4. Variation of chemical potential distribution P with distance x (concen-
trated force).
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Fig. 5. Variation of normal stress t33 with distance x (uniformly distributed
thermal source).

Fig. 6. Variation of temperature distribution θ with distance x (uniformly dis-
tributed thermal source).

8.1. Normal force on the surface of half-space

8.1.1. Concentrated force
The variations of normal stress t33 with the distance x have

been shown in Fig.1. The values of normal stress t33 in case
of TED (L–S) and TED (C-T) are more than TE (L–S) and
TE (C-T) near the loading surface and the distance away from
loading surface; t33 follow an oscillatory path with difference
in their magnitudes for both theories.

Fig. 2 shows that the values of temperature distribution θ

have an opposite oscillatory behavior for L–S and C-T theories
of thermoelasticity (with diffusion and without diffusion) in the
Fig. 7. Variation of concentration distribution C with distance x (uniformly
distributed thermal source).

Fig. 8. Variation of chemical potential distribution P with distance x (uniformly
distributed thermal source).

whole range of x but magnitude of oscillation in case of TED
(L–S) and TED (C-T) is less in comparison to TE (L–S) and TE
(C-T).

The values of concentration distribution C for both the L–S
and C-T theories (close to each other) start with sharp increase,
with further increase in distance x the values of C in case of
classical theory of thermoelasticity are more than L–S theory
in the intermediate range and smaller in the remaining range.
These variations are shown in Fig. 3.

The variations of chemical potential distribution P with dis-
tance x have been shown in Fig. 4. The values of chemical
potential distribution P for both TED (L–S) and TED (C-T)
decreases sharply as xranges between 0 � x � 6 and increases
as x increases further.

8.2. Thermal source on the surface of half-space

8.2.1. Uniformly distributed thermal source
The variations of normal stress t33 with the distance x have

been shown in Fig. 5. If we fix the point of observation i.e.
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Fig. 9. Variation of normal stress t33 with distance x (concentrated and uni-
formly distributed chemical potential sources).

Fig. 10. Variation of temperature distribution θ with distance x (concentrated
and uniformly distributed chemical potential sources).

the value of distance x, the values of normal stress t33 increase
and decrease for L–S theory(with and without diffusion) but
the oscillatory pattern is not uniform for all the distances x and
for all the values of t33, depicting the effect of diffusion. The
trend of variation of t33 for TED (C-T) and TE (C-T) follow an
oscillatory pattern in the whole range of x.

Due to effect of diffusion, the values of temperature distri-
bution θ in case of both TED (L–S) and TED (C-T) are more
than TE (L–S) and TE (C-T) in the range 0 � x � 1.8 and with
further increase in distance x, it reveals that all the values of θ

becomes nearer to zero value for both L–S and C-T theories.
These variations are shown in Fig. 6.
Fig. 11. Variation of concentration distribution C with distance x (concentrated
and uniformly distributed chemical potential sources).

Fig. 12. Variation of chemical potential P with distance x (concentrated and
uniformly distributed chemical potential sources).

It is noticed from Fig. 7 that the trends of variations for con-
centration distribution C are almost same for both L–S and C-T
theories. The values of concentration distribution C for both the
L–S and C-T theories decrease sharply in the initial range of x,
then follow an oscillatory pattern and gradually decrease to zero
value at x = 0.

The variations of chemical potential distribution P with dis-
tance x have been shown in Fig. 8. The values of chemical
potential distribution P for classical theory of thermoelastic-
ity is more than for L–S theory near the loading surface and
their values oscillates as x increases further but their magnitude
of oscillation are different.
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8.3. Chemical potential sources on the surface of half-space

(a) Solid line for thermoelastic diffusion with concentrated
source (TEDPS) and solid line with center symbol ‘trian-
gle’ for thermoelastic diffusion with uniformly distributed
source (TEDUDS) for L–S theory.

(b) Small dashed line for thermoelasticity with concentrated
source (TEDPS) and small dashed line with center symbol
‘diamond’ for thermoelasticity with uniformly distributed
source (TEDUDS) for C-T theory.

8.3.1. Concentrated and uniformly distributed chemical
potential sources

The variations of normal stress t33 with the distance x have
been shown in Fig. 9. The values of t33 in case of concentrated
source as well as uniformly distributed source show an oscilla-
tory behavior in the whole range of x for both the theories of
thermoelasticity (L–S and C-T) but the magnitude of oscillation
for uniformly distributed source are lesser than in comparison
to concentrated source.

For both concentrated source and uniformly distributed
source, the values of temperature distribution θ in case of C-T
theory are more than L–S theory at the loading surface and the
trend of variations of θ is oscillatory in the remaining range
for both the theories with difference in their magnitudes. These
variations are shown in Fig. 10.

It is seen from Fig. 11, that the type of source applied af-
fect only on the magnitude and not on the trend of the curves.
The values of concentration distribution C follow an oscillatory
pattern in the whole range, but, in case of concentrated source
the magnitude of oscillation is more in comparison to uniformly
distributed source for both the theories of thermoelasticity (L–S
and C-T).

The values of chemical potential distribution P in case
of concentrated source are greater than uniformly distributed
source for both classical theory (C-T) and L–S theory in the
initial range of x and then values of P are close to each other in
the remaining range except for TED (L–S).These variations are
shown in Fig. 12.

9. Conclusion

Frequency and effect of diffusion play an important role in
the study of the deformation of the body. Near the application
of the source, diffusivity increases the values of normal stress
and decreases the values of temperature distribution for con-
centrated force while for uniformly distributed thermal source,
diffusivity decreases the values of normal stress and increases
the values of temperature distribution and the behavior of vari-
ations are oscillatory for both sources as distance away from
the loading surface. The values of normal stress, temperature
distribution and concentration distribution in case of chemical
potential sources for C-T theory are more than L–S theory near
the point of application of source and follow an oscillatory pat-
tern away from the source. As the disturbances travels through
different constituents of the medium, it suffers sudden changes,
resulting in an inconsistent/non-uniform pattern of curves. The
trend of curves exhibits the properties of thermo-diffusivity of
the medium and satisfies the requisite condition of the problem.
The results of this problem are very useful in the two dimen-
sional problem of dynamic response due to various sources of
the thermoelastic diffusion which has the various geophysical
and industrial application.

Appendix A

Q = 1

A

[
B − 3ξ2A

]
N = 1

A

[
C − 2Bξ2 + 3ξ4A

]
I = 1

A

[
Bξ4 − Cξ2 + D − Aξ6]

λ2
4 = ξ2 − ω2

δ

and

A = −ε2 + 1

B = ε2
(
n2a2 + n1 − ω2 + ε1n1

) + ε1a1n1(a1 + 2) − n1

C = ε2a2

(
n1n2 + ω2n2 + ω2

a2
n1 − ε1n1n2

)
+ ω2ε1a

2
1n1

D = ω2ε2a2n1n2

Appendix B

dl = P ∗λ2
l + Q∗

R∗λ2
l + S∗ , el = U∗λ4

l + V ∗λ2
l + W ∗

X∗λ2
l + T ∗ (l = 1,2,3)

P ∗ = a1 + 1

a1
, U∗ = 1 + a1

Q∗ = −
[(

ξ2 − ω2) + ξ2

a1

]
, V ∗ = −(

2(1 + a1)ξ
2 − a1ω

2)
R∗ = 1

ε1a1n1
, W ∗ = (1 + a1)ξ

4 − a1ω
2ξ2

S∗ = 1 − 1

ε1a1n1

(
ξ2 + n1

)
, X∗ = a1 + ε2

T ∗ = −{[a1 + ε2]ξ2 + ε2a2n2
}

Appendix C

The expressions for components of displacement, stress,
temperature distribution and chemical potential distribution are
given as

û1 = 1

Δ

{
P1ψ̂1(ξ)

[
(−iξ)

(
Δ1e−λ1z − Δ2e−λ2z + Δ3e−λ3z

)
+ λ4Δ4e−λ4z

]}
eiωt (C.1)

û3 = −1

Δ

{
P1ψ̂1(ξ)

[
λ1Δ1e−λ1z − λ2Δ2e−λ2z + λ3Δ3e−λ3z

+ iξΔ4e−λ4z
]}

eiωt (C.2)

t̂33 = 1

Δ

{
P1ψ̂1(ξ)

[
s1Δ1e−λ1z − s2Δ2e−λ2z + s3Δ3e−λ3z

+ s4Δ4e−λ4z
]}

eiωt (C.3)
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t31 = 1

Δ

{
P1ψ̂1(ξ)

[
λ1Δ1e−λ1z − λ2Δ2e−λ2z + λ3Δ3e−λ3z

− m1Δ4e−λ4z
]}

eiωt (C.4)

θ̂ = 1

Δ

{
P1ψ̂1(ξ)

[
d1Δ1e−λ1z − d2Δ2e−λ2z

+ d3Δ3e−λ3z
]}

eiωt (C.5)

P̂ = 1

Δ

{
P1ψ̂1(ξ)

[
t1Δ1e−λ1z − t2Δ2e−λ2z

+ t3Δ3e−λ3z
]}

eiωt (C.6)

where

Δ = {−[s4λ1 + m1s1](d2t3 − d3t2) + [s4λ2 + m1s2]
× (d1t3 − d3t1) − [s4λ3 + m1s3](d1t2 − d2t1)

}
Δ1 = m1(d2t3 − d3t2), Δ2 = m1(d1t3 − d3t1),

Δ3 = m1(d1t2 − d2t1)

Δ4 = [
λ1(d2t3 − d3t2) − λ2(d1t3 − d3t1) + λ3(d1t2 − d2t1)

]
sl = b1λ

2
l − b1dl − b1el − b2iξ (l = 1,2,3)

s4 = (iξb1 + b2)λ4

tl = ξ2 − λ2
l − ε2el − a1dl (C.7)

Appendix D

The expressions for components of displacement, stress,
temperature distribution in thermoelastic half-space are given
as

û1 = 1

Δ∗
{
P1ψ̂1(ξ)

[
(−iξ)

(−Δ′
1e−λ1z + Δ′

2e−λ2z
)

− λ4Δ
′
3e−λ4z

]}
eiωt (D.1)

û3 = −1

Δ∗
{
P1ψ̂1(ξ)

[−λ1Δ
′
1e−λ1z + λ2Δ

′
2e−λ2z

− iξΔ′
3e−λ4z

]}
eiωt (D.2)

t̂33 = 1

Δ∗
{
P1ψ̂1(ξ)

[−s∗
1Δ′

1e−λ1z + s∗
2Δ′

2e−λ2z

− s∗
4Δ′

3e−λ4z
]}

eiωt (D.3)

t31 = 1

Δ∗
{
P1ψ̂1(ξ)

[−λ1Δ
′
1e−λ1z + λ2Δ

′
2e−λ2z

+ m1Δ
′
3e−λ4z

]}
eiωt (D.4)

θ̂ = 1

Δ∗
{
P1ψ̂1(ξ)

[−d1Δ
′
1e−λ1z + d2Δ

′
2e−λ2z

]}
eiωt (D.5)

where

Δ∗ = [
s4(λ1d2 − λ2d1) + m1(s

∗
1d2 − s∗

2d1)
]

Δ′
1 = m1d2, Δ′

1 = m1d1, Δ′
3 = [λ1d2 − λ2d1]

s∗
l = b1λ

2
l − b1dl − b2iξ, (l = 1,2)

s4 = (iξb1 + b2)λ4 (D.6)
Appendix E

B = iωε2(a2 + 1 + iω + ε1) + ε1a1iω(a1 + 2) − iω

C = ε2a2ω
2
(

1 + iω + iω

a2
+ ε1

)
+ iω3ε1a

2
1

D = ω4ε2a2

R∗ = 1

ε1a1iω
, S∗ = 1 − ξ2 + iω

ε1a1iω

T ∗ = −{[a1 + ε2]ξ2 + iωε2a2
}

s∗
l = b1λ

2
l − b1dl − b2iξ (l = 1,2)

sl = b1λ
2
l − b1dl − b1el − b2iξ (l = 1,2,3)

s4 = (iξb1 + b2)λ4

tl = ξ2 − λ2
l − ε2el − a1dl
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